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Metamaterial With Local
Resonators Coupled by Negative
Stiffness Springs for Enhanced
Vibration Suppression
In recent years, metamaterials for the applications in low-frequency vibration suppression
and noise reduction have attracted numerous research interests. This paper proposes a
metamaterial system with local resonators from adjunct unit cells coupled by negative stiff-
ness springs. Frist, a lumped parameter model of the system is developed, and a stability
criterion is derived. The band structure of the infinite lattice model is calculated. The
result reveals the appearance of extra band gaps in the proposed metamaterial. A paramet-
ric study shows that the first extra band gap can be tuned to ultralow frequency by control-
ling the negative stiffness of the coupling springs. A transmittance analysis of the finite
lattice model verifies the predictions obtained from the band structure analysis. Subse-
quently, the work is extended to a distributed parameter metamaterial beam model with
the proposed configuration of coupled local resonators. The stability analysis shows that
the infinitely long metamaterial beam becomes unstable as long as the stiffness of the cou-
pling spring becomes negative. For the finitely long metamaterial beam, the stability could
be achieved for negative coupling springs of given stiffnesses. The effects of the number of
cells and the lattice constant on the system stability are investigated. The transmittance of
the finitely long metamaterial beam is calculated. The result shows that due to the restriction
on the tunability of negative stiffness for the proposed metamaterial beam, a quasistatic
vibration suppression region can only be achieved when the number of cells is small.
[DOI: 10.1115/1.4043827]

1 Introduction
The suppression of structural vibrations is of great importance

in engineering fields, including civil, automotive, aerospace, etc.
Numerous passive [1–3] and active [4,5] methods have been pro-
posed to deal with this problem over the past few decades. Utilizing
periodic structures to form Bragg-scattering-type band gap is one of
the technologies that has been proposed for vibration protection
applications [6,7]. Specifically, engineered materials with periodic
features are termed as phononic crystals. The key feature of this
passive technique is the introduction of periodic impedance mis-
match in the structures [8]. By employing the piezoelectric elements
commonly used in the field of active vibration isolation, some
researchers proposed active phononic crystals with tunable band
gaps [9,10]. The main limitation of phononic crystals is that the
band gap depends on the periodic spacing constant. The generation
of low-frequency band gaps requires the periodic spacing constant
to be designed in the same order of the wavelength of the low-
frequency wave [11]. Due to the inverse relationship between the
frequency and the wavelength, phononic crystals are not suitable
for low-frequency vibration suppression applications.
The locally resonant metamaterial is a relatively new concept of

a periodic structure that can also generate the band gap phenomenon.
The work by Liu et al. [12] is deemed as the first realization of
the locally resonant metamaterial. The underlying mechanism of

generating band gap in the metamaterial is that the out-of-phase
motions of the local resonators counteract the external excitation
exerted on the main structure. The mass-in-mass model adopted in
the research [13] helps understand the dynamic behavior of metama-
terials including the negative effectivemass concept which is closely
related to the band gap.Metamaterials can overcome the limitation of
the phononic crystals and generate low-frequency band gaps regard-
less of the periodic spacing constant. Therefore, the research on
metamaterials has attracted extensive attention in recent years. An
experimental study revealed the negative effect mass phenomenon
in the mass-in-mass like structure [14]. Liu et al. [15] presented a
theoretical study on the calculation of the band structure of ametama-
terial beamwith local resonators. Zhu et al. [16] proposed a metama-
terial beam containing several different types of local resonators with
different natural frequencies for broadband vibration suppression.
Nouh et al. [17] designed ametamaterial platewith periodic local res-
onance structures. Huang and Sun [18] demonstrated a metamaterial
consisting of multiresonator mass-in-mass lattice with multiple band
gaps. Based on a different principle, Hu et al. [19] also proposed a
metamaterial with multiple band gaps in the form of mass-in-mass
lattice with internal couplings. Apart from various means to create
multiple band gaps in metamaterials, the use of piezoelectric
elements in metamaterials to achieve band gap tunability is also
a way to achieve broad band gap. Chen et al. [20] introduced
piezoelectric shunting arrays into sandwich plates. The resonance
in the electrical circuit aroused the generation of the band gap
which was tunable through the control of the electrical circuit. Zhu
et al. [21] realized an adaptive metamaterial with controllable band
gap through the tuning of the piezoelectric shunting circuit.
Several other related researches in this direction were reported in
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Refs. [22–25]. In summary, in a variety of proposedmetamaterials in
the aforementioned researches, low-frequency band gaps range from
tens to hundreds of Hz.
Although the low-frequency band gap phenomenon ofmetamater-

ials has already been extensively exploited, achieving ultralow/
quasistatic frequency band gap (covering the frequency down to
almost 0 Hz) is still a challenge. On this topic, Yu et al. [26]
studied the wave propagation in a beam on elastic foundations. It
is found that when the beam is attached with periodic local resona-
tors, a very low-frequency vibration attenuation region could be gen-
erated for prohibiting the propagation of low-frequency waves. Lee
et al. [27] fabricated an acoustic metamaterial tube with an array of
side holes. Experimental results showed that sound below 450 Hz
could not pass through the tube. Oh and Assouar [28] conceptually
designed a metamaterial with zero rotational stiffness which has
been analytically and numerically proved to be able to generate a
quasistatic band gap, i.e., the band gap starts from almost 0 Hz.
Drugan [29] presented a mathematical study of a periodic structure
with stabilized negative stiffness components. It has been analyti-
cally predicted that the system can prohibit the propagation of long-
wavelength waves which actually indicated the generation of an
ultralow frequency band gap in the system. To the authors’ best
knowledge, very limited research has been conducted for achieving
ultralow frequency (quasistatic) band gaps, which remains an
extremely difficult but important engineering problem to date.
In this paper, a metamaterial system with local resonators coupled

by negative stiffness springs is proposed for generating ultralow fre-
quency band gap. The paper is organized as follows. Section 2 pre-
sents the analysis of a lumped parameter model of the proposed
metamaterial. The stabilities of the finite and infinite lattice models
are investigated. The criterion for ensuring the system stability is
derived. Within the stabilized regime, the band structure of the infi-
nite lattice model is analyzed. The result shows that the introduction
of the negative stiffness springs makes the proposed metamaterial
generate three band gaps. A parametric study reveals the possibility
of the generation of the quasistatic band gap in the proposed meta-
material by tuning the negative stiffness of the coupling springs.
The transmittance analysis of the corresponding finite lattice model
is then performed to verify the predictions from the band structure
analysis of the infinite lattice model. In Sec. 3, the study is extended
to a metamaterial beam with the proposed configuration of local
resonators. The finite element (FE) method is used to model the pro-
posedmetamaterial beam system. Themesh convergence is first per-
formed to ensure the convergence of themodels. The stabilities of the
proposed metamaterial beams in both finitely and infinitely long
forms are then investigated. The results show that the infinitely
long metamaterial beam cannot include the proposed configuration,
i.e., local resonators alternately coupled by negative stiffness
springs. Only the stability criterion for the finitely long metamaterial

beammodel is given. The transmittance of the finitely long metama-
terial beam is studied, and its dynamic behavior is discussed. Section
4 gives a brief discussion on the possible implementation of the neg-
ative stiffness coupling. Section 5 summarizes the main findings
from this work.

2 Lumped Parameter Model
The mass-in-mass model has been widely employed for the

investigation of metamaterials. The mathematical treatment of the
lumped parameter model reflects the intrinsic mechanism of meta-
materials. In this section, the focus is on the development of the
proposed metamaterial with lumped parameters and evaluation of
its band gap behavior.

2.1 Model Description. The lumped parameter model of the
proposed metamaterial system is shown in Fig. 1. The unit cell of
the system consists of two identical mass-in-mass structures con-
nected in series. The outer and the inner masses of the mass-in-mass
system are denoted by m1 and m2, respectively. The neighboring
outer masses interact with each other via a spring of stiffness k1.
The inner and the outer masses within a unit cell are connected
by a spring of stiffness k2. The two inner masses m2 are coupled
by a spring of negative stiffness k3. It should be noted that the neg-
ative stiffness spring only exists in the unit cell and couples the
motions of the two inner masses in the unit cell. There is no negative
spring between inner masses in neighboring unit cells.
Figures 1(a) and 1(b) show the infinite lattice model with the

periodic boundary condition and the finite lattice model with the
fixed (left) and free (right) boundary conditions.
For the infinite lattice model, the governing equations can be

written as

m1ü
(2i+1)
1 + k1(2u

(2i+1)
1 − u(2i)1 − u(2i+2)1 )+ k2(u

(2i+1)
1 − u(2i+1)2 )= 0

m2ü
(2i+1)
2 + k2(u

(2i+1)
2 − u(2i+1)1 )+ k3(u

(2i+1)
2 − u(2i+2)2 )= 0

m1ü
(2i+2)
1 + k1(2u

(2i+2)
1 − u(2i+1)1 − u(2i+3)1 )+ k2(u

(2i+2)
1 − u(2i+2)2 )= 0

m2ü
(2i+2)
2 + k2(u

(2i+2)
2 − u(2i+2)1 )+ k3(u

(2i+2)
2 − u(2i+1)2 )= 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1)

where u(k)1 and u(k)2 denote the displacements of the outer and
inner masses in the kth mass-in-mass structure, respectively. Each
unit cell is formed by two mass-in-mass structures. The super-
scripts, k= 2i+ 1 and 2i+ 2, denote the two neighboring mass-in-
mass structures in the (i+ 1)th unit cell.
For the finite lattice model consisting of n unit cells (i.e., 2n

mass-in-mass structures), apart from the two unit cells at the bound-
aries, the governing equations of the inner unit cells are the same as

(a)

(b)

Fig. 1 (a) Infinite lattice model and (b) finite lattice model of the metamaterial with local
resonators coupled by negative stiffness springs
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Eq. (1). At the boundaries, the governing equations of the first and
last outer masses are given separately as follows:

m1ü
(1)
1 + k1(2u

(1)
1 − u0 − u(2)1 ) + k2(u

(1)
1 − u(1)2 ) = 0

m1ü
(2n)
1 + k1(u

(2n)
1 − u(2n−1)1 ) + k2(u

(2n)
1 − u(2n)2 ) = 0

{
(2)

It can be anticipated that with an increase of the number of cells,
the dynamic behavior of the finite lattice model should approach
that of the infinite lattice model (except minor differences at the
boundaries).

2.2 Stability Analysis. Since negative stiffness springs are
introduced in the proposed metamaterial system, the proposed
system is prone to lose stability. Before any further study is con-
ducted, it is crucial to investigate the stability of this system first.
As presented in Sec. 2.1, there are infinite and finite lattice models.
Since the infinite lattice model can be regarded as an extreme case
of the finite lattice model, we naturally embark on the finite lattice
model. Then, with the increase in the number of cells to a large
value, it is possible to derive the stability of the infinite lattice model.

2.2.1 Finite Lattice Model. For the stability of the linear
systems, it can be judged according to the eigenvalues of Jacobi’s
matrix [30]. First, we rearrange the governing equations of the
finite lattice model in the first order form

ẋ = X(x) (3)

where x = u(1)1 u̇(1)1 u(1)2 u̇(1)2 u(2)1 u̇(2)1 u(2)2 u̇(2)2 · · ·
[

u(2i+1)1 u̇(2i+1)1 u(2i+1)2 u̇(2i+1)2 u(2i+2)1 u̇(2i+2)1 u(2i+2)2 u̇(2i+2)2 · · ·
]
.

Jacobi’s matrix A is thus obtained as

A = (ark)N and ark =
∂Xr

∂xk

( )
xk=0

(4)

It is noteworthy that A is a N×N square matrix and N= 8n, ark is
the rth row and kth column element of matrix A. If the real parts of
all the eigenvalues λ of A are negative, i.e., Re(λ) < 0, then the
response of the system must be asymptotically stable for t→∞.
Otherwise, if there exists an eigenvalue λ of A with a positive
real part, i.e., Re(λ) > 0, then the response of the system must be
unstable for t→∞.

2.2.2 Infinite Lattice Model. Regarding the stability of the infi-
nite lattice model, it is not convenient to directly apply the same
method by checking the eigenvalues of Jacobi’s matrix. Starting
from the infinite lattice assumption, i.e., the periodic boundary con-
dition, by applying Bloch’s theorem, one can express the wave form
of the harmonic displacements of the outer and inner masses in the
(2i+ 1)th and (2i+ 2)th mass-in-mass structures as

u(2i+1)1 = Ae j(qx−ωt)

u(2i+2)1 = Be j(qx+qL−ωt)

u(2i+1)2 = Ce j(qx−ωt)

u(2i+2)2 = De j(qx+qL−ωt)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ (5)

where q is the wave number. A, B, C, and D are the complex wave
amplitudes. Substituting Eq. (5) into Eq. (1) yields

2k1 + k2 − m1ω2 −2k1 cos (qL) −k2 0
−k2 0 k2 + k3 − m2ω2 −k3e jqL

−2k1 cos (qL) 2k1 + k2 − m1ω2 0 −k2
0 −k2 −k3e−jqL k2 + k3 − m2ω2

⎡
⎢⎢⎣

⎤
⎥⎥⎦

A
B
C
D

⎡
⎢⎢⎣

⎤
⎥⎥⎦ =

0
0
0
0

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (6)

where L is the lattice constant. To ensure the existence of nontrivial
solutions of A, B, C, andD, the determinant of the coefficient matrix
of Eq. (6) needs to be zero. This condition states the dispersion
relation between the wavenumber of the wave propagated in the
metamaterial and its frequency. By sweeping the wavenumber,
the corresponding frequencies can be obtained. For a stable
system, for any wavenumber, the corresponding wave frequencies
must be real values. On the other hand, for an unstable system,
there will be solutions of wave frequencies with negative imaginary
parts for any wavenumber. This indicates that the response of
the system grows to infinity (i.e., unstable) for t→∞. It is worth
noting that the underlying principles of both methods, i.e., evaluat-
ing eigenvalues of Jacobi’s matrix and calculating the wave fre-
quencies, are actually the same. The eigenvalues contain
information about the properties of the wave solutions. In order to
make the results of the subsequent study more general, several
dimensionless parameters are introduced.

μ =
m2

m1
; α =

ω1

ω2
; β =

k3
k2

(7)

where ω1 =
�������
k1/m1

√
and ω2 =

�������
k2/m2

√
.

By using the aforementioned methods, the criteria for ensuring
the stability of both the finite and infinite lattice models are
derived. Figure 2 shows the dimensionless critical negative stiff-
ness, i.e., critical βc for the system with respect to μ and α. The crit-
ical value of βc means that if β≥ βc, the system is stable; otherwise,
the system is unstable. It is worth mentioning that Fig. 2 represents
the results for both finite and infinite lattice models. Moreover,
for the finite lattice model, regardless of the number of cells that
the system contains, the critical βc is always the same for given μ

and α. Therefore, it can be stated that the stability conditions of
both the finite and infinite lattice models should be the same as
that of the unit cell. In other words, the stability condition of the
system only depends on the stability condition of the unit cell that
constitutes the system. The following investigations are conducted
based on the prerequisite that the system stability is ensured, i.e.,
restricting β in the stable regime (β≥ βc).

2.3 Negative Effective Mass. One of the most important fea-
tures of metamaterials is that the effective mass could become

Fig. 2 Critical βc versus μ and α
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negativewithin a certain range of frequency [14].Moreover, the neg-
ative effective mass characteristic is closely related to the band gap
phenomenon. Therefore, within the stable regime, this section inves-
tigates the effective mass of the proposed metamaterial.
The basic unit cell of the proposed metamaterial is shown in

Fig. 1(a). By assuming that the internal interactions within the
unit cell are all absorbed by the left-hand side outer mass m1, one
can use an effective mass meff to represent the unit cell. Considering
Newton’s second law, the acceleration of an object is directly pro-
portional to the force applied on it and inversely proportional to its
mass. To calculate the effective mass, one can assume that a

harmonic force is directly exerted on the left-hand side outer
mass in a given unit cell. Through the manipulation of the govern-
ing equations of the unit cell, the displacements of other masses can
be eliminated except the displacement of the left-hand side outer
mass. The relationship between the displacement of the left-hand
side outer mass and the force is then obtained. Since the applied
force is assumed to be in the harmonic form, the displacement
and acceleration responses should also be in the harmonic form.
Therefore, based on the obtained relationship between the force
and the displacement of the left-hand side outer mass, the effective
mass meff can be obtained

meff

m1
=
Ω6 − 2(α2 + β + μ + 1)Ω4 + [2α2(2β + μ + 2) + μ(4β + μ) + 2(β + μ) + 1]Ω2 − 2(μ + 1)[α2(2β + 1) + βμ]

Ω6 − (α2 + 2β + μ + 2)Ω4 + [2α2(β + 1) + (2β + 1)(μ + 1)]Ω2 − [α2(2β + 1) + βμ]
(8)

It can be noted that the effective mass meff is frequency depen-
dent. For given μ= 0.4 and α= 1.2, the dimensionless effective
mass meff/m1 is plotted against the dimensionless frequency Ω
(Ω = ω/ω2) as shown in Fig. 3. The result of the conventional meta-
material without negative spring interaction (i.e., β= 0) is included
for comparison. From the knowledge of the conventional metama-
terial, the band gap appears around the frequency range where the
effective mass becomes negative. As shown in Fig. 3, the effective
mass of the conventional metamaterial always becomes negative
around Ω= 1. For the proposed metamaterial (i.e., β≠ 0), the effec-
tive mass becomes negative for three times in three different fre-
quency ranges (for Ω< 1, slightly less than Ω= 1, and for Ω> 1).
It is noted that the frequency where the negative effective mass
meff appears for the first time in Ω< 1 varies significantly with the
increase of the magnitude of β. While the frequencies at which neg-
ative meff appears for the second and third times have small varia-
tion with respect to β.

2.4 Band Structure Analysis. This section investigates the
band gap behavior of the proposed metamaterial based on the infi-
nite lattice model. Although the infinite lattice model theoretically
has infinite number of degrees of freedom (DOFs), the periodic
boundary condition derived from the infinite assumption actually
significantly simplifies the complexity of this problem. Therefore,
the infinite lattice model will be treated first to give a prediction
of the dynamic characteristics of the proposed metamaterial
system. The finite lattice model will then be solved to confirm the
prediction from the infinite lattice model.

By directly using Bloch’s theorem to describe the periodic
boundary conditions and then forcing the determinant of the coeffi-
cient matrix of Eq. (6) to be zero, one could obtain the dispersion
relation of the proposed metamaterial. However, the result of this
technique does not provide information regarding attenuation
apart from the band gap ranges. The transfer matrix method is there-
fore utilized for the band structure analysis of the proposed metama-
terial. The implementation of the transfer matrix method mainly
relies on the formulation of the transfer matrix of the lattice that
relates the forces and displacements at the left and right cell bound-
aries (Fig. 4).
fL and fI are the forces exerted on the left and right outer masses in

one unit cell from their left-hand sides, respectively. uL and uI are
their displacements. fR and uR are the corresponding force and dis-
placement related to the left outer mass of the succeeding unit cell.
xL and xI are the displacements of the left and right inner masses,
respectively. By adhering to the notations shown in Fig. 4, the gov-
erning equations of the left-hand side mass-in-mass system can be
written as

−m1ω2UL + k1(UL − UI ) + k2(UL − XL) = −FL

−m2ω2XL + k2(XL − UL) + k3(XL − XI) = 0
FI = k1(UI − UL)

⎧⎨
⎩ (9)

The capitalized symbols in Eq. (9) represent the corresponding
amplitudes (e.g., UL is the amplitude of uL). Similarly, the govern-
ing equations of the right-hand side mass-in-mass system are
expressed as

−m1ω2UI + k1(UI − UR) + k2(UI − XI) = −FI

−m2ω2XI + k2(XI − UI) + k3(XI − XL) = 0
FR = k1(UR − UI )

⎧⎨
⎩ (10)

Combining the second equation of Eq. (9) and the second equa-
tion of Eq. (10), one could solve for XL and XI in terms ofUL andUI.
Subsequently, substituting the expression of XL into the first equa-
tion of Eq. (9) and in conjunction with the third equation of Eq. (9),

Fig. 3 Dimensionless effective massmeff/m1 versus dimension-
less frequency Ω Fig. 4 Force and displacement interactions at the interfaces
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one could express FI and UI in terms of FL and UL as follows:

FI

UI

[ ]
=

B11 B12

B21 B22

[ ]
FL

UL

[ ]
(11)

where

B11 =
k1(m2

2ω
4 − 2(k3 + k2)m2ω2 + 2k3k2 + k22)

k1m2
2ω

4 − 2k1m2(k3 + k2)ω2 + 2k3k1k2 + k3k22 + k1k22

B12 =
k1(−m1m2

2ω
6 + (2k3m1m2 + 2k2m1m2 + k2m2

2)ω
4 − (2k3k2m1 + 2k3k2m2 − k22m1 − k22m2)ω2)

k1m2
2ω

4 − 2k1m2(k3 + k2)ω2 + 2k3k1k2 + k3k22 + k1k22

B21 =
m2

2ω
4 − 2m2(k3 + k2) + 2k3k2 + k22

k1m2
2ω

4 − 2k1m2(k3 + k2)ω2 + 2k3k1k2 + Kk22 + k1k22

B22 =

−m1m2
2ω

6 + (2k3m1m2 + k1m2
2 + 2k2m1m2 + k2m2

2)ω
4

−(2k3k1m2 + 2k3k2m1 + 2k3k2m2 + 2k1k2m2 + k22m1 + k22m2)ω2 + 2k3k1k2 + k3k22 + k1k22

[ ]
k1m2

2ω
4 − 2k1m2(k3 + k2)ω2 + 2k3k1k2 + k3k22 + k1k22

By following the same procedure, considering the right-hand side mass-in-mass system, FR and UR can be expressed in terms of FI, UI,
FL, and UL as follows:

FR

UR

[ ]
=

C11 C12

C21 C22

[ ]
FI

UI

[ ]
+

D11 D12

D21 D22

[ ]
FL

UL

[ ]
(12)

where

C11 = 1

C12 =
−m1m2

2ω
6 + (2k3m1m2 + 2k2m1m2 + k2m2

2)ω
4 − (2k3k2m1 + 2k3k2m2 + k22m1 + k22m2)ω2 + k3k22

m2
2ω

4 − 2(k3 + k2)m2 + 2k3k2 + k22

C21 =
1
k1

C22 =

−m1m2
2ω

6 + (2k3m1m2 + k1m2
2 + 2k2m1m2 + k2m2

2)ω
4

−(2k3k1m2 + 2k3k2m1 + 2k3k2m2 + 2k1k2m2 + k22m1 + k22m2)ω2

+2k3k1k2 + k3k22 + k1k22

⎡
⎣

⎤
⎦

k1[m2
2ω

4 − 2(k3 + k2)m2 + 2k3k2 + k22]

D11 = 0

D12 = −
k3k22

m2
2ω

4 − 2(k3 + k2)m2 + 2k3k2 + k22

D21 = 0

D22 = −
k3k22

k1[m2
2ω

4 − 2(k3 + k2)m2 + 2k3k2 + k22]

Through the manipulation of Eqs. (11) and (12) by eliminating FI andUI, one could derive the transfer matrix T that relates the forces and
displacements at the left and right cell boundaries.

FR

UR

[ ]
=

C11 C12

C21 C22

[ ]
B11 B12

B21 B22

[ ]−1
+

D11 D12

D21 D22

[ ]{ }
︸�����������������������������︷︷�����������������������������︸

T

FL

UL

[ ]
(13)

According to the periodic boundary condition, by using Bloch’s theorem, the forces and displacements at the left and right cell bound-
aries could be related in the form as

FR

UR

[ ]
= e jqL 0

0 e jqL

[ ]
FL

UL

[ ]
(14)

Comparing Eqs. (13) and (14) yields a standard eigenvalue problem of the transfer matrix T.

|T − e jqLI| = 0 (15)

where I is the 2 × 2 unit matrix. For a given ω, solving Eq. (15) gives the solutions of q. The property of q contains the information that
predicts the wave propagation behavior in the metamaterial. Imaginary q indicates an evanescent wave that will decay quickly with an
increase in the propagation distance. This means that the corresponding wave frequency falls into the band gap.
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Given μ= 0.4 and α= 1.2, Figs. 5 and 6 show the real and
imaginary parts, respectively, of the complex band structures for
the proposed metamaterials with different values of β. The x-axis
and the y-axis denote the normalized wave number q*= qL/π and
the dimensionless frequency Ω=ω/ω2, respectively. The case of
the conventional metamaterial without the negative stiffness cou-
pling springs is represented by β= 0 (Figs. 5(a) and 6(a)).
As seen in Figs. 5(b)–5(d ), with the introduction of the negative

stiffness coupling springs, there appear three band gaps in the pro-
posed metamaterial. The second band gap of the proposed meta-
material is also located around Ω= 1, like the band gap of the
conventional metamaterial but becomes wider. From the point of
view of only the second band gap, the proposed metamaterial is
already superior to the conventional one due to this wider band
gap. Moreover, the existence of the two additional band gaps is
the further superiority of the proposed metamaterial in terms of
the broadband vibration suppression. It is noted that with the
increase of the magnitude of β, the first band gap of the proposed
metamaterial becomes wider and moves downward to the lower fre-
quency. While the second and the third band gaps are not very sen-
sitive to the change of β, it is worth mentioning that Fig. 5(d )
presents the result corresponding to the critical value, βc=
−0.439, of this example system. One can note that by tuning to
the critical βc, we are able to achieve an ultralow frequency

(almost quasistatic) band gap. It is to note that the limitation of
Bragg scattering phononic crystals is the difficulty in their usage
effectively in low-frequency applications, and one main advantage
of the locally resonant metamaterials is the ease design that allows
achieving low-frequency band gaps. Therefore, from the point of
view of the generation of the quasistatic band gap, the proposed
metamaterial demonstrates the superiority in ultralow frequency
wave manipulation.
To inspect the attenuation abilities of the band gaps, Fig. 6 shows

the corresponding imaginary parts of the complex band structures of
the proposed metamaterials. The larger the imaginary part is, the
more rapidly the wave decays with the increase of the propagation
distance, i.e., the better the attenuation ability is. It can be observed
that in terms of the magnitude of the imaginary part, the conven-
tional metamaterial (Fig. 6(a)) exhibits the best attenuation capac-
ity. However, because the second band gap of the proposed
metamaterial is not much smaller than that of the conventional
one, and the attenuation and the imaginary magnitude are exponen-
tially related, the imaginary part of the proposed metamaterial is of
the same order of attenuation. Therefore, the width of the band gap
is more important. In addition, it can be noted that the imaginary
part of the third band gap is very small, and it is thus expected
that its attenuation ability is considerably weak for practical use
in finite lattice models. Besides, one can find that the magnitude

(a) (b)

(c) (d )

Fig. 5 Real part of complex band structures of the proposed metamaterial with different β: (a) β=0 (i.e., the conventional meta-
material), (b) β=−0.2, (c) β=−0.4, and (d ) β=−0.439

081009-6 / Vol. 86, AUGUST 2019 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/86/8/081009/5978439/jam
_86_8_081009.pdf by U

niversity of Auckland user on 24 O
ctober 2019



of the imaginary part of the first band gap decreases with the
increase of the magnitude of β. This indicates that though one
may create a quasistatic band gap by tuning β to approach the crit-
ical value βc, the practical vibration suppression ability of the first
band gap in the finite lattice model with only limited number of
cells may not be that satisfactory. However, this does not mean
that the quasistatic band gap is meaningless. To ensure the quasi-
static band gap to take an obvious effect, one could increase the
number of cells of the finite lattice model. This point will be dem-
onstrated and proved in Sec. 2.5.
To understand the effects of β on the band gap behavior of the pro-

posed metamaterial, thus providing some guidelines to tune β for the
potential optimized design, a parametric study is conducted. Figure 7
shows the evolution of the band gaps of the proposed metamaterials
with the variation of β, with μ and α being kept unchanged with
values of μ= 0.4 and α= 1.2. β varies from 0 to βc=−0.439. It can
be found that as long as β≠ 0, there appears two additional band
gaps. With an increase in the magnitude of β (i.e., the increase in
the strength of the negative coupling spring), the original band gap
(i.e., the second band gap) first becomes wider and then remains
almost unchanged (β<−0.044). The widths of the first and third
band gaps increase monotonically. However, even when β is tuned

Fig. 6 Imaginary part of complex band structures of the proposed metamaterial with different values of β: (a) β=0 (i.e., the con-
ventional metamaterial), (b) β=−0.2, (c) β=−0.4, and (d ) β=−0.439

Fig. 7 Evolution of band gaps of the proposed metamaterial
with varying β
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to βc, the actual width of the third band gap is still very narrow. The
width of the first band gap is also narrow when β is near 0; however,
when β is tuned to βc, its width increases and becomes comparable
with the second band gap. In addition, it is worth mentioning that
when β is tuned around −0.044, the first and second band gaps
merge together.
Since the previous results show that the proposed metamaterial at

critical βc exhibits an extraordinary phenomenon, i.e., the first band
gap becomes a quasistatic band gap, naturally, one will query
whether this phenomenon exists only in the special case (i.e.,
when μ= 0.4 and α= 1.2) or it exists with arbitrary values of μ
and α. To answer this question, the evolution of the band gaps of
the proposed metamaterials at critical βc with varying μ and α is
shown in Fig. 8.
It can be seen that regardless of the variation of the system in

terms of μ and α, the quasistatic band gap could always be achieved
at the critical value of βc. Moreover, one can observe the evolution
trends of band gaps with the variation of μ and α. With an increase
in μ and decrease in α, the widths of the first and the second band
gaps increase. However, the third band gap is always very
narrow. Nevertheless, the benefits from the appearance of the first
additional band gap and the enhancement of the second band gap
have already ensured the superiority of the proposed metamaterial.

2.5 Transmittance Analysis. Real systems cannot be infi-
nitely long. In practical applications, metamaterials are constituted
of limited number of cells. In this section, investigations on the
finite lattice model of the proposed metamaterial are conducted to
verify the predictions from the band structure analysis based on
the infinite lattice model. The performance of the proposed metama-
terial consisting of limited number of cells is examined. A similar
metamaterial system but with positive stiffness coupling springs
has already been reported in Ref. [19]. The mathematical modeling
procedure is the same as Ref. [19]. Therefore, the detailed procedure
is not repeated here.
Figure 9(a) presents the transmittances of the proposedmetamater-

ial consisting of limited cells with different β. μ and α are kept the
same with values μ= 0.4 and α= 1.2. It is worth noting that β= 0
represents the case of the conventional metamaterial. For the cases
of β≠ 0, the finite lattice models consist of 5 cells, i.e., 10 mass-
in-mass structures as one unit cell contains 2mass-in-mass structures.
For the case of β= 0, the finite lattice consist of 10 cells, i.e., 10
mass-in-mass structures, since each cell contains 1 mass-in-mass
structure. Hence, it is a fair comparison between the proposed and
conventional metamaterials. As expected, there is only one vibration
attenuation region in the transmittance of the conventional meta-
material. For the cases when β≠ 0, there appears two vibration
attenuation regions in the transmittance. These two vibration attenu-
ation regions correspond to the first two band gaps predicted from
the band structure analysis (Fig. 5). As discussed previously, since
the attenuation of the third band gap is very weak, in the finite
lattice model consisting of only limited number of cells, it does not
show up as an effective vibration attenuation region.
Regarding the second vibration suppression region, it is found

in Fig. 9 that its width is larger than that of the conventional one
(i.e., β= 0), which is consistent with what was obtained in the
band structure analysis (Fig. 5). Moreover, regardless of the
change of β excepting β= 0, the width of the second vibration atten-
uation region is almost unaffected, which is also consistent with the
prediction from the band structure analysis (Fig. 7). In terms of the
first vibration suppression region, one can find that with the increase
of the magnitude of β, its width becomes larger and it moves toward
the lower frequency. At β= βc, the first vibration attenuation region
starts almost from 0 Hz which is in accordance with the predicted
quasistatic band gap phenomenon. In addition, it is observed that
with an increase in themagnitude of β, the trough of thefirst vibration
attenuation region becomes shallower which indicates a reduction in
the attenuation ability. This also confirms the result obtained from the
analysis of the imaginary part of the complex band structure (Fig. 6).

(a) (b)

Fig. 9 Transmittances of the finite lattice model of the proposed metamaterial consisting of (a) five cells with different values of β
and (b) different number of cells at critical βc

Fig. 8 Evolution of the band gaps of the proposed metamater-
ials at critical βc with varying μ and α
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Due to this fact, though a quasistatic vibration suppression region is
generated, its practical vibration suppression capability is not as
effective as that of the second vibration suppression region. To
address this issue, one may increase the number of cells to deepen
the first vibration suppression region.
Figure 9(b) shows the transmittances of the proposedmetamaterial

by increasing the number of cells. As already expected, with an
increase in the number of cells, the vibration suppression ability of
the first attenuation region is significantly enhanced. Therefore, it
can be concluded that by carefully tuning the system parameters,
the proposed metamaterial with negative stiffness coupling springs
could provide away to achieve ultralow frequency vibration suppres-
sion, which will lead to their usages in many important applications.

3 Distributed Parameter Model
The beam is a structural element that is widely used in practical

engineering. The concept of metamaterials in the design of
beams can be adopted for suppressing vibrations. In this section,
we propose a metamaterial beam with local resonators coupled by
negative stiffness springs.

3.1 Model Description. The schematic of the proposed meta-
material beam with local resonators coupled by negative stiffness
springs is shown in Fig. 10. Figures 10(a) and 10(b) show the infi-
nitely long andfinitely longmetamaterial beammodels, respectively.
The thickness and width of the beam are hs and b, respectively. The
mass density andYoung’s modulus of thematerial that constitute the
host beam are ρ and Es, respectively. Uniform local resonators are
periodically attached onto the host beam at a constant spacing of d,
i.e., the lattice constant. These are modeled as lumped mass-spring
systems with the mass denoted by m2 and the stiffness denoted by
k2. The neighboring two local resonators are alternately coupled by
a negative stiffness coupling spring k3. To calculate the band struc-
ture of the infinitely long model, one could apply the most widely
used transfer matrix method. For the transmittance of the finitely
long metamaterial beam, either the transfer matrix method or an
approximate analytical method [31] could be employed. However,
considering the convenience for the later study of system stability,

the finite element method proposed in Ref. [32] is adopted for devel-
oping the model of the proposed metamaterial beam.
The host beam is discretised with the one-dimensional two-node

finite element. Each node of the discretised element has two DOFs:
translation u and rotation θ. The explicit expressions of the element
mass and stiffness matrices can be referred to Ref. [32]. After the
assembly of the element matrices, the global matrices and the
global governing equations of motion can then be obtained as

Mü +Ku = F (16)

For the infinitely long model, it is only required to build the gov-
erning equations of a unit cell and the right-hand side force term F is
dropped, since the band structure analysis is conducted under the
assumption of free vibration. The periodic boundary condition
can then be translated by using Bloch’s theorem. The amplitudes
of the displacements and rotations of the nodes at the left-hand
side (i.e., [ uR θR ]T ) and right-hand side (i.e., [ uR θR ]T ) cell
boundaries are related as

uR
θR

[ ]
= e jqd

uL
θL

[ ]
(17)

For the finitely long model, the mathematical treatment of the
clamped boundary condition is by eliminating the first two rows
and columns in the global mass and stiffness matrices. The transla-
tion and rotation DOFs of the first node are completely constrained
to be zero. The physically clamped boundary condition is thus math-
ematically implemented. The detailed finite element formulation is
similar to that for a metamaterial beam without coupling springs k3
which can be found in Ref. [32] and thus is not repeated here.

3.2 Convergence Study. The finite element method is
selected for performing the study of the proposed metamaterial
beam. The mesh convergence is an important issue in the accuracy
of the finite element method. Therefore, to ensure the mesh is fine
enough and produces converged results, a mesh convergence anal-
ysis is first undertaken. Taking a cantilevered plain beam as an
example and considering its transverse vibration, the convergence
of the model is investigated by increasing the mesh density

(a)

(b)

Fig. 10 (a) Infinitely long model and (b) finitely long model of the proposed metamaterial beam
with local resonators coupled by negative stiffness springs. The host beam is discretised as
finite elements.
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(i.e., number of elements). The geometric and material parameters
of the plain beam under investigation are listed in Table 1.
The variation of the calculated first four natural frequencies of the

cantilevered plain beam with the change of the mesh density is pre-
sented in Fig. 11. The corresponding finite element model is also
created with the commercial software ANSYS for verification and to
use as the reference solution for the mesh convergence study. The
results of the first four natural frequencies from ANSYS are 13.046,
81.735, 228.767, and 448.029 Hz, respectively. It can be seen that
the calculated natural frequencies converge with an increase in the
mesh density. The converged values agree well with those predicted
by the ANSYS, but there is still a bit difference. The error of the FE
method increases for predicting higher order of natural frequencies.
However, since within the frequency range of interest, the error is

very minor. It is deemed that the results from the employed FE
method are authentic. It is worth mentioning that when the entire
beam is meshed with 20 elements, the corresponding element
length is 25 mm. From the point of view of the meshed element
length, this indicates that for a beam of the same material, width
and thickness, by dividing it into elements with a length less than
25 mm, the convergence of the model can be guaranteed.

3.3 Stability Analysis. Due to the introduction of negative
stiffness springs, the proposed metamaterial beam is prone to be
unstable. Therefore, it is necessary to determine the system stability.
Since the infinitely longmodel can be regarded as the extreme case of
the finitely long model, we embark on the finitely long model first.

3.3.1 Finitely Long Metamaterial Beam. By directly calculat-
ing the natural frequencies of the finitely long metamaterial beam,
from the calculated natural frequencies, it can be evaluated
whether the system is stable or unstable. If any of the calculated
natural frequencies involves a nonzero imaginary part, the system
is unstable. If all the calculated natural frequencies are pure real
values, the system is stable. For the finitely long metamaterial
beam, based on the assembled global governing equations (i.e., Eq.
(16)), omitting the right-hand side forcing term, one can derive the
natural frequencies. We consider a proposed metamaterial beam
with the same parameters and properties listed in Table 1, except
the beam length that is dependent on the number of cells and the

Table 1 Geometric and material parameters of the cantilevered
plain beam

Parameters Values

Beam length, L 500 mm
Beam width, b 20 m
Beam thickness, hs 4 mm
Beam density, ρ 7850 kg/m3

Young’s modulus of the beam, Es 200 GPa

(a) (b)

(c) (d )

Fig. 11 Convergence plots of the first four natural frequencies with refinement of mesh: (a) first natural frequency, (b) second
natural frequency, (c) third natural frequency, and (d ) fourth natural frequency
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lattice constant in the following two case studies. The parameters of
the attached local resonators arem2= 27.2 g and k2= 8698 N/m. β is
a dimensionless parameter with the same definition that has been
introduced in the study of the lumped parameter model: β= k3/k2.
The subscript c represents critical value.
In the first case study, the lattice constant d is 100 mm, i.e., the

length of the unit cell is 100 mmor the spacing between the neighbor-
ing two local resonators is 50 mm (each unit cell contains two local
resonators). Each unit cell is meshed with 10 elements, i.e., the
element length is 10 mm which produces a higher mesh density
than the convergence requirement. Figure 12(a) shows the evolution
of the critical βcwith an increase in the number of cells (elements). It
should be noted that for a single cell, the critical βc is−0.483.With an
increase in the number of cells, the proposed metamaterial beam is
more prone to loss of stability. It can be inferred that when the
number of cells is increased to infinite, i.e., the beam approaches
the infinitely long metamaterial beam, the critical βc will be 0. This
means that the infinitely long metamaterial beam cannot contain
any negative coupling spring. This is different from the lumped
parameter model for which the stability is independent of the
number of cells. This difference can be explained by the discrepancy
between the lumped parameter model and the distributed parameter
model which intrinsically possesses the rotation DOF in addition to
the displacement DOF. For the finitely long metamaterial beam,
while analyzing the stability of the single-cell system, the left-hand
side of the system is assumed to be clamped. The rotation DOF of
the left-hand side is completely constrained. However, when multi-
ple cells are connected in series, the rotation DOFs of left-hand
sides of the cells except the first one in the multiple-cell system are
not constrained. Hence, the multiple-cell system cannot be simply
regarded as an assembly of multiple identical singe-cell systems.
Therefore, it can be understood why for the distributed parameter
model (i.e., metamaterial beam) the stability condition of a multiple-
cell system is not the same as that of a single-cell system. In addition
to the number of cells, in the second case study, the effect of the
lattice constant on the critical βc is also investigated. The proposed
metamaterial beam consists of 3 cells and each cell is meshed with
10 elements. Figure 12(b) shows the change of the critical βc with
an increase in the lattice constant. It can be observed that with an
increase in the lattice constant, the proposed metamaterial beam is
more prone to lose of stability.

3.3.2 Infinitely Long Metamaterial Beam. The stability of the
infinitely long metamaterial beam can be determined by using the
method presented in Ref. [32]. The procedure is similar to that of
the lumped parameter model introduced in Sec. 2.2. By sweeping

the wavenumber, one can calculate the corresponding frequencies.
For any given wavenumber, if all the solutions of the corresponding
frequencies are pure real values, the system is deemed to be stable.
Otherwise, provided that any of the solutions of the corresponding
frequencies involves a nonzero imaginary part, the system is unsta-
ble. The same mesh density is used for the infinitely long metama-
terial beam to ensure the model convergence. For the corresponding
infinitely long metamaterial beam with the same system parameters
as those of the finitely long metamaterial beam, it is found that as
long as β becomes negative, for any given wavenumber, there
appears one solution of the frequency that contains a nonzero imag-
inary part. This is indeed expected and confirms the speculation
derived from the parametric analysis of the effect of the number
of cells on the critical βc of the finitely long metamaterial beam.
This indicates that to ensure stability for the infinitely long metama-
terial beam, the stiffness of the coupling spring must not be tuned
negative. Therefore, there is no significance to investigate the infi-
nitely long metamaterial beam and its band gap behavior. The focus
of Sec. 3.4 will be on the investigation of the finitely long model of
the proposed metamaterial beam.

3.4 Transmittance Analysis. In combination with the
clamped-free boundary conditions, the governing equations (i.e.,
Eq. (16)) of the proposed metamaterial beam consisting of limited
number of cells can be solved. Detailed procedures can be referred
to Ref. [32]. The transmittance is defined as the ratio of the displace-
ment amplitude at the free end to the displacement amplitude of the
base excitation. Figure 13 shows the transmittances of the proposed
metamaterial beams with different β and different number of cells. It
should be mentioned that the critical βc for the metamaterial beams
consisting of 3, 5, 10, and 15 cells are −0.41, −0.318, −0.157, and
−0.086, respectively. From Fig. 13, it can be noted that for the
cases when β≠ 0, there appears an additional vibration attenuation
region in the lower frequency range. A common trend that can be
observed is that with an increase in themagnitude of β, the additional
vibration suppression region shifts downward to the lower frequency
direction.
Figure 13(a) shows that for the proposed metamaterial beam con-

sisting of three cells, when β is tuned to the critical value −0.41, a
quasistatic vibration suppression region (i.e., starts from almost
0 Hz) with a considerable width is formed. This phenomenon is
favorable for the realization of ultralow frequency vibration sup-
pression. However, due to the fact that with an increase in the
number of cells, the magnitude of the critical βc decreases, i.e.,
the system becomes more prone to be unstable, the tunability of β

(a) (b)

Fig. 12 Variation of βc (a) with an increase in the number of cells (the lattice constant is fixed at 50 mm) and (b) with an increase in
lattice constant (the number of cells is fixed at 6)
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is strongly restricted. Therefore, the quasistatic vibration suppres-
sion region cannot be achieved in the proposed metamaterial
beam with many cells. Moreover, the additional vibration suppres-
sion region in the proposed metamaterial beam with many cells is
very narrow, limiting its practical use in the circumstances where
the vibation energy is spread over a wide frequency range. This
poses the contradiction in the selection of the number of cells. As
well known and also shown in Fig. 13, with an increase in the
number of cells, the main vibration suppression region becomes
deeper, indicating stronger vibration suppression ability. Recalling
that the quasistatic vibration attenuation region only appears when
the number of cells is small, a certain trade-off is needed for the
appearance of the quasistatic vibration suppression region and the
enhancement of the main vibration suppression region.

4 Further Discussion
The key of the proposed metamaterial system presented in this

paper is to achieve the internal coupling by introducing negative
stiffness springs. There are various ways to implement negative
stiffness, depending on the characteristics of the real structures.
From the literature, two main strategies for achieving negative stiff-
ness components are buckled beams [33,34] and precompressed
spring configurations [35,36]. However, the structures to achieve
the above two mechanisms are relatively complicated and may

not be feasible in the design of the proposed metamaterials from
the mechanical perspective. Metamaterials are often required to
have simple and concise forms to ensure the periodicity. Therefore,
an alternative solution to realize the negative stiffness coupling for
the metamaterial system is proposed based on the negative capaci-
tance (NC) [37,38].
This mechanism using NC is inspired by the analogies between

the electrical and mechanical domains. Based on the similarities
between the differential governing equations in the electrical and
mechanical domains, a mechanical system can be represented by
an equivalent circuit and vice versa. A capacitor in the electrical
domain is equivalent to a spring in the mechanical domain. By
using the piezoelectric patch that couples the electrical and mechan-
ical domains, it can be speculated that the introduction of a negative
capacitance in the shunting circuit of the piezoelectric patch will
be equivalent to the introduction of a negative stiffness spring in
the mechanical structure. Consider a piezoelectric patch shunted
to a negative capacitance Cn (Fig. 14). By using the electromechan-
ical analogies, it can be represented by an equivalent electrical
model or an equivalent mechanical model. C and K represent the
capacitance and the stiffness, respectively. The subscripts n and p
denote the negative capacitor and the piezoelectric patch, respec-
tively. In fact, based on this idea, Zhu et al. [21] experimentally
realized the control of Young’s modulus of the piezoelectric
patch through the development of a negative capacitance shunting

(a) (b)

(c) (d )

Fig. 13 Transmittances of the proposed metamaterial beam with different β and different number of cells: (a) 3 cells, (b) 5 cells,
(c) 10 cells, and (d ) 15 cells

081009-12 / Vol. 86, AUGUST 2019 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/86/8/081009/5978439/jam
_86_8_081009.pdf by U

niversity of Auckland user on 24 O
ctober 2019



circuit. They employed the piezoelectric patches shunted to NC cir-
cuits in the design of an actively tunable metamaterial. It has been
experimentally validated that the band gap of the metamaterial can
be tailored by adjusting the parameters of the shunt circuits. In
addition, it has been theoretically demonstrated that by carefully
tuning the value of the negative capacitance, the effective stiffness
introduced by the piezoelectric patch could become negative [39].
On the other hand, Li et al. [40] proposed a metamaterial system

with internal coupling with adjacent piezoelectric patches coupled
by LC shunt circuits. The electrical resonances in the coupled cir-
cuits aroused the band gap phenomenon in the dynamic motion
of the mechanical structure. The detailed explanation on the mech-
anism and the mathematical derivation could be found in Ref. [40].
Inspired by the work of Zhu et al. [21] and Li et al. [40], it can be
expected that a coupled circuit with negative capacitance can realize
the internal coupling with negative stiffness springs between two
mechanical resonators. By carefully tuning the value of the negative
capacitance, the circuit-induced coupling between the two piezo-
electric patches can equivalently act as a negative stiffness spring
that couples the motions of the two resonators. Since the main
focus of this manuscript is on the theoretical analysis of the
dynamic characteristics of the proposed metamaterial, the details
of the implementation will not be further discussed here.

5 Conclusions
The paper has proposed a metamaterial system with a new

arrangement of local resonators. The local resonators in the pro-
posed metamaterial system are alternately coupled by negative stiff-
ness springs. Both the lumped parameter model (mass-in-mass
structure) and the distributed parameter model (beam structure rep-
resentation) of the proposed metamaterial system are studied. For
the lumped parameter model, it is found that there appear three
band gaps in the proposed metamaterial. A parametric study estab-
lishes that the total effective width of the band gaps is increased for
the proposed metamaterial as compared to the conventional one
without negative spring couplings. Moreover, by tuning the nega-
tive stiffness to the critical value, the proposed metamaterial can
provide a quasistatic band gap which is favorable for realizing ultra-
low frequency vibration suppression. This quasistatic band gap is
also observed in the transmittance of the finite lattice model of
the proposed metamaterial as a vibration suppression region.
In the distributed parameter model, the stability analysis indicates

that the stiffness of the coupling spring cannot be tuned to negative
values, and the quasistatic band gap cannot be achieved for an infi-
nitely long metamaterial beam. For the practical finitely long meta-
material beam, it was found that with an increase in the number of
cells and the lattice constant, the proposed metamaterial beam
becomes more prone to be unstable. Within the stability regime, by
designing a proposed metamaterial beam with a small number of
cells, a quasistatic vibration suppression region can be potentially
obtained. A trade-off is required for the selection of number of
cells to ensure the appearance of the quasistatic vibration suppression

region and the enhancement of the main vibration suppression
region.
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